
1

Forum

Real-World Buffer Overflow
Protection in User & Kernel Space

Michael Dalton, Hari Kannan, Christos Kozyrakis

Computer Systems Laboratory

Stanford University

http://raksha.stanford.edu

2

Forum

Motivation

Buffer overflows remain a critical security threat

Deployed solutions are insufficient
• Provide limited protection (NX bit)
• Require recompilation (Stackguard, /GS)
• Break backwards compatibility (ASLR)

Need an approach to software security that is
• Robust - no false positives on real-world code
• Practical - works on unmodified binaries
• Safe - few false negatives
• Fast

3

Forum

DIFT: Dynamic Information Flow Tracking

DIFT taints data from untrusted sources
• Extra tag bit per word marks if untrusted

Propagate taint during program execution
• Operations with tainted data produce tainted results

Check for suspicious uses of tainted data
• Tainted code execution
• Tainted pointer dereference (code & data)
• Tainted SQL command

Potential: protection from low-level & high-level threats

4

Forum

Data T

DIFT Example: Buffer Overflow

Tainted pointer dereference ⇒ security trap

int buf[8];

for (i = 0; i < len; i++)

buf[i] = u;

return;

Vulnerable C Code

load r2 ← M[u]

store M[buf+0] ← r2

…

store M[buf+7] ← r2

store M[ra] ← r2

jmp *M[ra]

ra: &foo

buf[0]: 0

buf[7]: 0

u: &evil

TRAP

buf[0]: &evil

buf[7]: &evil

ra: &evil

5

Forum

Hardware DIFT Overview

The basic idea [Suh’04, Crandall’04, Chen’05]

• Extend HW state to include taint bits
• Extend HW instructions to check & propagate taint bits

Hardware advantages
• Negligible runtime overhead

Software DIFT overheads range from 3-37x

• Works with multithreaded and self-modifying binaries
• Apply tag policies to OS

6

Forum

Raksha Overview & Features

HW Architecture Tags

Operating System Tag
Aware

App
Binary

4 tag bits per word
HW check/propagate
User-level security traps

App
Binary

User 1 User 2

Cross-process info flow
Save/restore tags

Set security policies
Control HW check/propagate

Unmodified binaries

Security Monitor

App
Binary

User 3

7

Forum

Outline

Motivation & DIFT overview

Preventing buffer overflows with DIFT
• Previous work
• Novel BOF prevention policy

Evaluation
• Prototype
• Security experiments
• Lessons learned

Conclusions

8

Forum

Naïve Buffer Overflow Detection

Previous DIFT approaches recognize bounds checks
• Must bounds check untrusted info before dereference

Example: if (u < len) print buf[u];

Taint untrusted input
OR Propagate taint on load,store,arithmetic,logical ops
Clear taint on bounds checks
• Comparisons against untainted info

Check for tainted code, load/store/jump addresses
• Forbid tainted pointer deref, code execution

9

Forum

Problems with Naïve Approach

Not all bounds checks are comparisons
• Example : *str++ = digits[val % 10]
• GCC, glibc, gzip…

Not all comparisons are bounds checks
• Example: if (sz < fastbin_size) insert_fastbin(chunk);
• Resulted in false negative during traceroute/malloc exploit

Bounds checks are not required for safety!
• Example: return isdigit[(unsigned char)x]

isdigit array is 256 entries! Don’t need any bounds check
But stripped binary doesn’t tell us array sizes….

End result: unacceptable false positives in real code

10

Forum

Building a Better Security Model for BOF

Buffer overflow attacks rely on injecting pointers
• Code pointers

Return address, Global Offset Table (GOT), function ptr
• Data pointers [Chen 05]

Filenames, permission/access control structures, etc

Why pointers?
• They’re everywhere!

Every stack frame (local pointers, frame pointer, ret addr)
Every free heap object (glibc)
Global Offset Table, constructors, destructors, …

• Security-critical
Control pointers - arbitrary code execution
Data Pointers – subvert logic using tainted data structures

11

Forum

Preventing Pointer Injection with DIFT

Buffer overflows exploits overwrite pointers
• But should never receive pointer from network!
• Tainted data used as pointer index, never as pointer

address

New DIFT BOF Policy
• Tainted data cannot be dereferenced directly
• Must be combined with application pointer to be safe
• Pointer bit – tag legitimate application pointers
• Taint bit – tag untrusted data

But how do we identify legitimate application pointers?

12

Forum

New BOF Policy – Taint bit

Goal: conservatively track untrusted information
• Do not try to clear taint by recognizing bounds checks
• Only clear taint when reg/mem word overwritten

Taint untrusted input
OR Propagate on load, store, arithmetic, logical ops
Check for tainted code
Check if code/data ptr is tainted and not a valid ptr
• Security exception if Taint bit set & Pointer bit clear

13

Forum

New BOF Policy – Pointer bit

Propagate Pointer bit during valid pointer ops
• Load/Store Pointer
• Pointer +,-,OR,AND Non-Pointer
• Pointer +,- Pointer

Encountered in real-world, byte of pointer used
as array index

Clear P-bit on all other operations
• Multiply, logical negation, etc

Check for untrusted pointer dereferences
• Security exception if T-bit set, P-bit clear

14

Forum

Identifying Userspace Pointers

Initialize P-bit for all local variable references
• Set P-Bit for stack pointer

Initialize P-bit for all dynamically allocated memory references

• Set P-bit for return value of mmap, brk syscalls

Initialize P-Bit for static/global variable references
• Scan all executable, library objects for these references

Scan both code, data regions
Set P-bit for potential any potential valid pointers

• ABI (ELF, PE) restricts such references
Must be valid relocation entry type

15

Forum

BOF Protection in Kernel Space

OS dereferences untrusted pointers!
• System call arguments come from untrusted userspace
• Example: int unlink(const char * pathname)

Why is this safe?
• All user pointers must be checked by access_ok()
• Ensures user pointer is in userspace, not kernelspace

What instructions may access userspace?
• Any instruction accessing userspace may cause MMU fault
• All modern Unix OSes build tables of these instructions!

Any MMU fault not found in the table is an OS bug
Safe untrusted pointer dereference in Linux:
• Tainted pointer must point to userspace
• PC must be in MMU fault list

16

Forum

Raksha Prototype System

Full-featured Linux system

HW: modified Leon-3 processor
• Open-source, Sparc V8 processor
• Single-issue, in-order, 7-stage pipeline
• Modified RTL for processor & system
• Mapped to FPGA board (65Mhz workstation)

SW: ported Gentoo Linux distribution
• Based on 2.6 kernel (modified to be tag aware)
• Kernel preloads security manager into each process
• Over 14,000 packages in repository (GNU toolchain,

apache, sendmail, …)

17

Forum

Experiments (Userspace)

Successfully running Gentoo without false positives
• Every program, even init, has BOF protection enabled
• Run gcc, OpenSSH, sendmail, etc.

Prevented attacks on real-world applications

Program Attack Detection

Polymorph Stack overflow Tainted code ptr

Atphttpd Stack overflow Tainted code ptr

Sendmail BSS overflow Tainted data ptr

Traceroute Double free Tainted data ptr

Nullhttpd Heap overflow Tainted data ptr
All userspace programs are unmodified binaries

18

Forum

Experiments (Kernelspace)

Protect entire Linux kernel from BOF
• First comprehensive kernel buffer overflow protection
• Even protect assembly code, device drivers, ctx switch

Only observed one potential false positive
• Caused by previously undiscovered security hole!

Prevented real-world attacks on Linux kernel

Subsystem Vulnerability
quota system call User/Kernel pointer deref

i2o driver ioctl User/Kernel pointer deref

moxa driver BSS overflow

cm4040 driver Heap overflow

sendmsg system call Stack, Heap overflow

19

Forum

Comprehensive BOF protection

Can some BOF vulnerabilities still be exploited?
• Yes, if BOF doesn’t rely on pointer corruption

Authentication flag, user IDs, array/pointer offsets…
• Rare, but possible – depends on application data structure layout, etc

Combine multiple BOF protection policies for safety!
• Attacker must evade all active policies to succeed

But must ensure all policies have no real-world false positives…

• Policy #1: Bounds check BOF protection for control pointer only
Bounds check false positives only observed for data pointers
Prevents control pointer array offset overwites

• Policy #2: Red Zone bounds checking for heap
Tag begin/end of each heap object with Sandbox bit
Raise error if user attempts to load/store to sandbox’d address
Detects heap buffer overflows

Use Raksha to run all policies concurrently (w/ Pointer BOF)
• No false positives – tested in userspace and kernelspace
• Verified new policies stop control pointer overwrites, heap overflows (resp.)

20

Forum

Conclusions

Pointer-based BOF protection is practical
• Prevents real-world buffer overflows – code/data pointer

No source code access, debugging info, etc required

• No observed false positives
Tested GCC, Apache, OpenSSH, etc

Protection can even be extended to OS
• Full OS - FS, MM, device drivers, context switch, etc
• Only potential false positive was a real security hole

Compose multiple policies for best protection
• Only miss an attack if it can evade all active policies

21

Forum

Questions?

Want to use Raksha?
• Go to http://raksha.stanford.edu
• Raksha port to Xilinx XUP board

$300 for academics
$1500 for industry

• Full RTL + Linux distribution coming soon

http://raksha.stanford.edu/

22

Forum

Bonus round: Why not bounds checking?

Compatibility
• C was never meant to be bounds checked

Ex: optimized glibc() memchr() reads out of bounds
Context sensitive- Apache ap_alloc => malloc=>brk

• Inline assembly, Multithreading
• Dynamically loaded plugins, dynamically gen’d code
• Closed-source libraries, objects in other languages

Cost – recompiling is expensive
• Global recompilation of all system libs is not happening
• Just ask MS to recompile MFC…

Performance
• Overheads must be low (single digit) to drive adoption

	Real-World Buffer Overflow Protection in User & Kernel Space
	Motivation
	DIFT: Dynamic Information Flow Tracking
	DIFT Example: Buffer Overflow
	Hardware DIFT Overview
	Raksha Overview & Features
	Outline
	Naïve Buffer Overflow Detection
	Problems with Naïve Approach
	Building a Better Security Model for BOF
	Preventing Pointer Injection with DIFT
	New BOF Policy – Taint bit
	New BOF Policy – Pointer bit
	Identifying Userspace Pointers
	BOF Protection in Kernel Space
	Raksha Prototype System
	Experiments (Userspace)
	Experiments (Kernelspace)
	Comprehensive BOF protection
	Conclusions
	Questions?
	Bonus round: Why not bounds checking?

